标准偏差(Std Dev,Standard Deviation) - 统计学名词。
一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
标准偏差公式:S = Sqr(∑(xn-x拨)^2 /(n-1))
公式中∑代表总和,x拨代表x的算术平均值,^2代表二次方,Sqr代表平方根。
例:有一组数字分别是200、50、100、200,求它们的标准偏差。
x拨 = (200+50+100+200)/4 = 550/4 = 137.5
S^2 = ((200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2)/(4-1) = (62.5^2+(-87.5)^2+(-37.5)^2+62.5^2)/3 = (3906.25+7656.25+1406.25+3906.25)/3 = 16875/3 = 5625
标准偏差 S = Sqr(5625) = 75
一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
百度一下就知道了。
标准偏差统计学名词。
一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
标准偏差公式:
S = Sqrt[(∑(xi-x拔)^2) /(N-1)]公式中∑代表总和,x拔代表x的均值,^2代表二次方,Sqrt代表平方根。