证明:∫(0~π) xf(sinx)dx 令y=π-x,则有dx=-dy=∫(π~0) (π-y)f[sin(π-y)](-dy)=∫(0~π) (π-y)f(siny)dy=∫(0~π) πf(siny)dy-∫(0~π) yf(siny)dy=π∫(0~π) f(sinx)dx-∫(0~π) xf(sinx)dx得2∫(0~π) xf(sinx)dx=π∫(0~π) f(sinx)dx故∫(0~π) xf(sinx)dx=π/2*∫(0~π) f(sinx)dx