过点E作EM∥AC交BC于点M,则∠BME=∠ACB,∠MED=∠F∵AB=AC∴∠B=∠ACB=∠BME∴BE=ME∵BE=CF∴ME=CF∴ΔEMD≌ΔFCD∴DE=DF
过E做EG∥BC交AF于G∵AB=AC∴BE=CG=CF∴DE=DF(平行线等分线段定理)
过F点做直线L平行于AB延长BC交直线L于G点易证ABC与CFG相似,因为AB=AC,所以CF=FG因为BE=CF,易证BED与GFD全等,故得证DE=DF