若(x-1)(y+1)=3,xy(x-y)=4,求x的7次方减去y的7次方的值.

2025-01-02 11:11:49
推荐回答(1个)
回答1:

∵(x-1)(y+1)=3,∴xy+(x-y)-1=3,∴xy+(x-y)=4,又xy(x-y)=4,
∴由韦达定理可知:xy、x-y是方程z^2-4z+4=0的根。
由z^2-4z+4=0,得:(z-2)^2=0,∴z=2,∴x-y=2、xy=2,∴-xy=-2。
∵x-y=2、-xy=-2,∴由韦达定理可知:x、-y是方程m^2-2m-2=0的根。
由m^2-2m-2=0,得:m^2-2m+1=3,∴(m-1)^2=3,∴m-1=√3,或m-1=-√3,
∴m=1+√3,或m=1-√3。
∴x=1+√3、-y=1-√3;或x=1-√3、-y=1+√3,
∴x+y=2√3,或x+y=-2√3。

一、由x-y=2、x+y=2√3,得:x^2-y^2=2√3。
  由x+y=2√3,得:x^2+2xy+y^2=12,∴x^2+y^2=12-2xy=12-2×2=8。
  ∴(x^2-y^2)(x^2+y^2)=16√3,∴x^4-y^4=16√3。
  由x+y=2√3,得:x^3+3xy(x+y)+y^3=24√3,
  ∴x^3+y^3=24√3-3xy(x+y)=24√3-3×2×2√3=12√3。
  ∴(x^4-y^4)(x^3+y^3)=16√3×12√3=576,
  ∴x^7+(xy)^3(x-y)-y^7=576,
  ∴x^7-y^7=576-(xy)^3(x-y)=576-2^3×2=576-16=560。

二、由x-y=2、x+y=-2√3,得:x^2-y^2=-2√3。
  由x+y=-2√3,得:x^2+2xy+y^2=12,∴x^2+y^2=12-2xy=12-2×2=8。
  ∴(x^2-y^2)(x^2+y^2)=-16√3,∴x^4-y^4=-16√3。
  由x+y=-2√3,得:x^3+3xy(x+y)+y^3=-24√3,
  ∴x^3+y^3=-24√3-3xy(x+y)=-24√3+3×2×2√3=-12√3。
  ∴(x^4-y^4)(x^3+y^3)=-16√3×(-12√3)=576,
  ∴x^7+(xy)^3(x-y)-y^7=576,
  ∴x^7-y^7=576-(xy)^3(x-y)=576-2^3×2=576-16=560。

综上一、二所述,得:x^7-y^7=560。