证明:延长AM到F,使MF=AM,连接BF,CF(如图)
∵BM=CM,AM=FM,
∴四边形ABFC为平四边形.
∴FB=AC=AE,∠BAC+∠ABF=180°
又∵∠BAC+∠DAE=180°,
∴∠DAE=∠ABF,
又∵AD=AB,
∴△DAE≌△ABF(SAS),
∴DE=AF=2AM.
字母不一样,但只要了解方法就可以做了,只要改动一下字母就可以了
望采纳,谢谢
延长AD,使AD=DM
连接BM
∵AD是角BC边上的中线,即BD=CD
AD=DM
∠BDM=∠ADC
∴△ACD≌△BDM
∴∠DAC=∠BMA
∵△ABE和△ACF是等腰直角三角形
∴∠BAE=∠CAF=90°
AE=AB,AC=AF……(1)
∵∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∠BAC=∠BAD+∠DAC=∠BAD+∠BMF
∠ABM+∠BAD+∠BMA=∠ABM+∠BAC=180°
∴∠EAF=∠ABM……(2)
∴△AEF≌△ABM(SAS)
∴EF=AM=AD+DE=2AD