解:原式=2/(1×2)+2/(2×3)+2/(3×4)+......+2/(19×20)
=2×[1/(1×2)+1/(2×3)+1/(3×4)+......+1/(19×20)]
=2×(1/1-1/2+1/2-1/3+1/3-1/4+......+1/19-1/19+1/20)
=2×(1-1/20)
=2×19/20
=19/10
1/(1+2+3+...+n)
= 1/(n*(n+1)/2)
= 2/(n*(n+1))
= 2(1/n-1/(n+1))
所以原式等于
2(1/2-1/3+1/3-1/4+……+1/19-1/20)
= 2(1/2-1/20)
= 9/10
1/(1+2)+1/(1+2++3)+1/(1+2+3+4)+……+1/(1+2+3+……+19)
=2*【1/2*(1+2)+1/2*(1+2++3)+……+1/2*(1+2+3+……+19)】
=2*【1/2-1/3+1/3-1/4+……+1/19-1/20】
=2*【1/2-1/20】
=1-1/10
=9/10
原式=2/6+2/12+2/20+............+2/(19乘20)
=2(1/2-1/3+1/3-1/4+1/4-1/5+.............1/19-1/20)
=2乘(1/2-1/20)
=9/10