1⼀1×2+1⼀2×3+1⼀3×4+1⼀4×5+1⼀5×6+……1⼀2005×2006+1⼀2006×2007

2025-01-05 00:26:45
推荐回答(3个)
回答1:

1/[n(n+1)=1/n-1/(n+1)]
所以:1/1x2=1-1/2
1/2x3=1/2-1/3
1/3x4=1/3-1/4
……
1/2005x2006=1/2005-1/2006
1/2006x2007=1/2006-1/2007
所以原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……(1/2005-1/2006)+(1/2006-1/2007)
=1-1/2007
=2006/2007
就是裂项求和法

回答2:

裂项!!!用=(1-1/2)+(1/2-1/3)……以此类推……自己算吧

回答3:

=1-1/2+1/2-1/3+1/3-1/4+……+1/2006-1/2007
=1-1/2007
=2006/2007