1/[n(n+1)=1/n-1/(n+1)]
所以:1/1x2=1-1/2
1/2x3=1/2-1/3
1/3x4=1/3-1/4
……
1/2005x2006=1/2005-1/2006
1/2006x2007=1/2006-1/2007
所以原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……(1/2005-1/2006)+(1/2006-1/2007)
=1-1/2007
=2006/2007
就是裂项求和法
裂项!!!用=(1-1/2)+(1/2-1/3)……以此类推……自己算吧
=1-1/2+1/2-1/3+1/3-1/4+……+1/2006-1/2007
=1-1/2007
=2006/2007