1+1⼀2+(1⼀3+2⼀3)+(1⼀4+2⼀4+3⼀4)+...+(1⼀50+2⼀50+...+49⼀50)简算

2024-12-18 17:44:31
推荐回答(2个)
回答1:

原式=1+1/2+1+(1/4+3/4)+2/4+(1/5+4/5)+(2/5+3/5)+(1/6+5/6)+(2/6+4/6)+3/6+......+(1/50+49/50)+(2/50+48/50)+......+25/50
=1+1/2+1+1+1/2+2+2+1/2+3+3+1/2+4+4+1/2+.....+24+24+1/2
=1+1/2+2*(1+2+3+...+24)+24*(1/2)
=1+1/2+2*(1+24+2+23+3+22+...+12+13)+12
=1+1/2+2*25*12+12
=613+1/2
=613.5

回答2:

1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
=1+1/2+2/2+3/2+……+49/2
=1+(1/2+49/2)×49/2
=1+25÷49/2
=613.5