由√(x-2)+y^2-y+1/4=0,得√(x-2)+(y-1/2)^2=0,∴x=2,y=1/2.∴1/√x+√(1-y)+√y^2=1/√2+√(1/2)+1/2=√2+1/2.
∵ √(x-2) + y²-y+1/4=0,即 √(x-2) + (y - 1/2)² =0,∴ x-2=0,y - 1/2=0 (∵√(x-2)≥0,(y - 1/2)²)≥0)即 x=2,y = 1/2,∴ 1/(√x)+ √(1-y) +√y² =√2 +1/2 。