已知数列1,(1+1⼀2),(1+1⼀2+1⼀4),…(1+1⼀2+1⼀4+…+1⼀2^n-1),则其前n项和sn,我想知道求完an后,怎么求Sn

要具体过程,谢谢
2024-12-17 19:17:00
推荐回答(3个)
回答1:

an=1+1/2+1/4+……+1/2^(n-1)=(1-1/2^n)/(1-1/2)=2-1/2^(n-1)
所以Sn=2n-[1+1/2+1/4+……+1/2^(n-1)]
=2n-an
=2n-2+1/2^(n-1)

回答2:

an=1+1/2+1/4+…+1/2^(n-1)=(1-1/2^n)/(1-1/2)=2-1/2^(n-1)
Sn=2-1/2^0+2-1/2^1+2-1/2^2+...+2-1/2^(n-1)
=2n-[1+1/2+1/2^2+...+1/2^(n-1)]
=2n-2+1/2^(n-1)

回答3:

wakaohaonan