当k是偶数时:
[sin(kπ-a)*cos(kπ+ a)] / {sin[(k +1)π+a]*cos[(k+1)π-a]}
=[-sin(a)*cos(a)]/[-sin(a)*-cos(a)]=-1
当k是奇数时:
[sin(kπ-a)*cos(kπ+ a)] / {sin[(k +1)π+a]*cos[(k+1)π-a]}
=[sin(a)*-cos(a)]/[sin(a)*cos(a)]=-1
综上所述,原式=-1
等于-1,大概要用积化和差,和差化积之类的,不过最推荐用特殊值如k=0