1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9+19*10+1/10*11
=1/2-1/3+1/3-1/4+1/4-……-1/10+1/10-1/11
=1/2-1/11
=9/22
1/[n(n+1)]=[(n+1)-n]/[n(n+1)]=(n+1)/[n(n+1)]-n/[n(n+1)]=1/n-1/(n+1)
-2-(+3)-(-5)+(-4)
=-5+5-4
=-4
-3/4+1又1/6+1/3-1/2
=-3/4+1又1/2-1/2
=-3/4+1
=1/4
(4又7/9)-(3又1/6)-(+2又2/9)+(-6又1/6)
=(4又7/9-2又2/9)-(3又1/6+6又1/6)
=2又5/9-10又1/3
=-7又7/9