已知数列{an}中a1=2,a2=1,且a(n-1)-an⼀a(n-1)=an-a(n+1)⼀a(n+1)(n≥2)则an=

2024-12-22 00:49:21
推荐回答(3个)
回答1:

a(n-1)-an)/(an-1)=(an-a(n+1))/a(n+1)
同除以a(n)
a(n)-a(n+1)]/[a(n)a(n+1)] = [a(n-1)-a(n)]/[a(n-1)a(n)]
[a(n)-a(n+1)]/[a(n)a(n+1)] = [a(n-1)-a(n)]/[a(n-1)a(n)] = ... = [a(1)-a(2)]/[a(1)a(2)]
又因为[a(1)-a(2)]/[a(1)a(2)] =1/2,
所以a(n)-a(n+1) = [a(n)a(n+1)]/2,
同除a(n)a(n+1):1/a(n+1) - 1/a(n) = 1/2,
{1/a(n)}是首项为1/2的等差数列.
1/a(n)=1/2+(n-1)/2=n/2,
a(n)=2/n,

回答2:

最后那一项什么意思?

回答3:

a(n+1)-3an+2a(n-1)=0 a(n+1)-an=2[an-a(n-1)] [a(n+1)-an]/[an-a(n-1)]=2 {an-a(n-1)}是公比为2的等比数列 an-a(