y=(x^2-1)⼀(x^2+1)的值域?

2024-12-27 23:33:14
推荐回答(4个)
回答1:

y=(x²+1-2)/(x²+1)
=(x²+1)/(x²+1)-2/(x²+1)
=1-2/(x²+1)

x²+1>=1
0<1/(x²+1)<=1
-2<=-2/(x²+1)<0
-1<=1-2/(x²+1)<1
值域[-1,1)

回答2:

[0,正无穷)。
设k=x^2+1,则k大于等于1,
y=k-1/k,为k的增函数,
k=1时最小值为0,
k趋向正无穷大时,y趋向于正无穷大。

回答3:

设t=x^2+1,x^2=t-1
y=(t-2)/t,整理得y=1-2/t,值域是y不等于1

回答4:

值域=[-1,1)