求和: 1⼀1*2*3+1⼀2*3*4+1⼀3*4*5+。。。。。。1⼀98*99*100

2025-01-02 12:57:34
推荐回答(4个)
回答1:

1/1*2*3+1/2*3*4+1/3*4*5+......1/98*99*100
=(2/1*2*3+2/2*3*4+2/3*4*5+......+2/98*99*100)/2
=[(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+......++(1/98*99-1/99*100)]/2
=(1/1*2-1/99*100)/2
=(1/2-1/9900)/2
=4949/19800

【希望可以帮到你! 祝学习快乐! O(∩_∩)O~】

回答2:

功夫

回答3:

考察一般项:
1/[k(k+1)(k+2)]=(1/2)[(1/k -1/(k+1)-(1/(k+1)-1/(k+2)]

1/(1×2×3)+1/(2×3×4)+...+1/(98×99×100)
=(1/2)[(1-1/2)-(1/2-1/3)+(1/2-1/3)+(1/3-1/4)+...+(1/98-1/99)-(1/99-1/100)]
=(1/2)[(1-1/2)-(1/99-1/100)]
=(1/2)(1/2-1/99+1/100)
=4949/19800

回答4:

裂项抵消
1/1*2*3=1/2(1/1*2-1/2*3)
后面的一次类推
可以得到
1/2(1/1*2-1/99*100)=4949/19800