已知f(x)=sin^2(x-π⼀6)+sin^2(x+π⼀6)+√3 (sinxcosx)

2025-01-06 06:31:37
推荐回答(2个)
回答1:

1、
f(x)=sin²(x-π/6)+sin²(x+π/6)+√3 (sinxcosx)
=[(√3/2)sinx - (1/2)cosx]² + [(√3/2)sinx + (1/2)cosx]² + √3(sinxcosx)
=(3/2)sin²x + (1/2)cos²x + √3(sinxcosx) (把上式全部拆开)
=sin²x + (1/2)sin²x + (1/2)cos²x + √3(sinxcosx)
=sin²x + 1/2 + √3(sinxcosx)
=(1-cos2x)/2 + 1/2 + (√3/2)sin2x
=(√3/2)sin2x - (1/2)cos2x + 1
=sin(2x-π/6) + 1
∴最大值为2
当2x-π/6 = π/2 + 2kπ, 即x = π/3 + kπ ,k∈Z时, 取最大值。
∴x取值范围为{x|x=π/3 + kπ, k∈Z}

2、
-π/12≤x≤5π/12
-π/6≤2x≤5π/6
-π/3≤2x-π/6≤2π/3
∴-√3/2≤sin(2x-π/6)≤1
∴(2-√3)/2≤sin(2x-π/6) + 1≤2
即:值域为[(2-√3)/2,2]

回答2:

1。
f'=2sin(x-π/6)cos(x-π/6)+2sin
(x-π/6)cos(x-π/6)+√3cos2x
=sin(2x-π/3)+sin(2x+π/3)
+√3cos2x
=sin2xcosπ/3-
cos2xsinπ/3+sin2xcosπ/3+cos2xsinπ/3+√3cos2x
=2sin2xcosπ/3+2cos2xsinπ/3=2sin
(2x+π/3)
2nπ<2x+π/3<(2n+1)π即nπ-
π/6f'>0,x=nπ-π/6或nπ+1/3π时,
f'=0,其余f'=0
故,x取nπ+1/3π时,f(x)取
最大值,最大值为:自己代数
算~
2。
值域为【f(-π/12),f(nπ
+1/3π)】具体得数自己代数
算~