证明sin^2(α)+cos^2(α)=1

2024-12-31 15:43:12
推荐回答(1个)
回答1:

在一个直角三角形ABC中(对不起,没有图)
设AB=c BC=a AC=b(c为斜边)
假设∠ABC=α
则sin(α)=b/c cos(α)=a/c
所以sin^2(α)+cos^2(α)=(b/c)^2+(a/c)^2
又因为a^2+b^2=c^2(勾股定理)
所以sin^2(α)+cos^2(α)=(b/c)^2+(a/c)^2=(a^2+b^2)/c^2=c^2/c^2=1