为什么分子的电子光谱为带状光谱?在高极性溶剂中为何精细结构完全消失

2025-03-21 14:47:28
推荐回答(1个)
回答1:

紫外-可见吸收光谱测量的是分子的电子态跃迁.各个电子能级中包含有振动能级和转动能级.
由于测量的时候用的是连续光源,因而分子吸收激发光的时候,各个相应电子态中的所有振动和转动能级都有吸收,因而谱线是带状的.
如果用对应于基态和某一激发态的能量的激光来激发,那么得到的吸收光谱是一个谱峰,可能是高斯线型或者罗伦兹线型分布.

---------------------------------------------------------------------
原文由祥子(nemoium)发表:原文由 我在故我思(hotdoglet) 发表:
楼主,你好!首先分子光谱一般是带状谱是相对于分辨率高低而言的,就是说在极高的光谱分辨率下也可以看到分子光谱的精细结构,类似原子光谱的谱线;原子光谱的谱线如果不考虑自身宽度外的其他宽度,那么只有很窄的自宽,而非几何意义上的“线”。而分子光谱与原子光谱不同是其有很多的能级,且能级间的能量差较小,在价电子的跃迁、振动、转动过程(这些过程在很多情况下是同时存在的)中,很多跃迁是同时发生的,这导致了不同频率能量的吸收,显现的是连续的带状吸收谱线。
------------------------------------
确实是这样,原子吸收主要是基态原子跃迁到第一激发态。而分子吸收光谱的能级变化包括电子跃迁、振动、和转动的能量变化,所以分子光谱是一系列谱线组成,准确的说是离散的(比如相差0.2nm),不是真正的连续谱线。而且原子吸收光谱也不是严格意义上的一根“线”,除了许多的展宽效应,据量子理论,也不可能是单一波长,总有一定的宽度。
-------------------------------------------------
分子光谱分成三类,一类伴随分子键伸缩、结构扭动、摆动和转动的能级跃迁光谱,通常处于中远红外谱域,含氢基团的化合键伸缩振动的合频与倍频位于近红外谱域,而伴随分子中价电子能级的跃迁的光谱则在紫外可见谱域。原子光学光谱(不包含X射线光谱)是伴随价电子能级跃迁的光谱行为,需要原子化过程,而独立原子的价电子能级是孤立的,故原子光谱是线状的,有很高的选择性。而分子光谱中的价电子能级因为化学键的作用呈带状,带状的能级键跃迁导致的光谱自然也是带状的。

----------------------------------------------------
为什么溶液剂型越强,吸收光谱精细结构会消失呢?

极性强相互作用强,会形成类似于氢键的东西,所以吸收峰杂乱
追问:
是说吸收峰会覆盖原来的精细结构吗
追答:
这个不能确定,但已经失去应用价值了,无法准确判断了