解:a是锐角π/2cos(a+π/6)=4/5,sin(a+π/6)=3/5sin(2a+π/3)=2sin(a+π/6)cos(a+π/6)=2*(4/5)*(3/5)=24/25cos(2a+π/3)=2cos²(a+π/6)-1=2*(4/5)²-1=7/25sin(2a+π/12)=sin[(2a+π/3)-π/4]=sin(2a+π/3)cos(π/4)-cos(2a+π/3)cos(π/4)=(24/25)*(√2/2)-(7/25)*(√2/2)=17√2/50
sin(2a+π/12)=cos[2(a+π/6)-π/4]=√2/2(cos[2(a+π/6)]+sin[2(a+π/6)])因为cos(a+π/6)=4/5,所以sin(a+π/6)=3/5cos[2(a+π/6)]=2[cos(a+π/6)]²-1=7/25,sin[2(a+π/6)]=cos(a+π/6)*sin(a+π/6)=24/25。所以结果为√2/2*(31/25)=31√2/50.