f(x)=(√3/2)sin2x-(1/2)cos2x=sin(2x-π/6)
1、最小正周期是2π/2=π;
2、增区间是:2kπ-π/2≤2x-π/6≤2kπ+π/2
即:kπ-π/6≤x≤kπ+π/3
得增区间是:[kπ-π/6,kπ+π/3],其中k∈Z
f(x)=√3sinxcosx-1/2cos2x
=√3/2sin2x-1/2cos2x
=sin(2x-π/6)
所以最小正周期是2π/2=π
单增区间
2kπ-π/2≤2x-π/6≤2kπ+π/2
2kπ-π/3≤2x≤2kπ+2π/3
kπ-π/6≤x≤kπ+π/3
f(x)=√3sinxcosx-1/2cos2x
=√3/2*2sinxcosx-1/2cos2x
=√3/2*sin2x-1/2cos2x
=sin(2x-π/6)
T=2π/ω=π
单调增区间为-π/2+2kπ<2x-π/6<π/2+2kπ -> -π/6+kπ