微分方程两边积分左边,=[2+u]/u/[u+3]du多项式分解,[2+u]/u/[u+3]=A/u+B/(u+3),得出2+u=A(u+3)+BuA+B=1,3A=2,得出A=2/3,B=1/3原式=[2/3/u+1/3/(u+3)]du,积分=1/3*[ln(u^2)+ln(u+3)]+C与右边合并,1/3*[ln(u^2)+ln(u+3)]+C=ln(1/x)+C11/3*ln[u^2(u+3)]=ln(C/x)得出(C/x)^3=u^2(u+3)