求由方程xcosy=sin(x+y)所确定的应函数导数Y✀x的详细过程及结果

2024-12-15 04:10:14
推荐回答(4个)
回答1:

解:两边分别对x求导,将y看为x函数,遇到单独的y时用y‘代替 ,(如果出现形如xy的情形时,则表示为(xy)'=y+xy' )

cosy-(xsiny)y' =cos(x+y)(1+y')
然后解出y' 就行了。即y'=[cosy-cos(x+y)]/[cos(x+y)+xsiny]

回答2:

xcosy=sinxcosy+cosxsiny
cosy-y'xsiny=cosxcosy-y'sinxsiny -sinxsiny+y'cosxcosy
cosy-y' xsiny=cos(x+y)+y'cos(x+y)
cos(x+y)-cosy= -y'[cos(x+y)+xsiny]
y'= -[cos(x+y)-cosy]/[cos(x+y)+xsiny]

回答3:

解:
xcosy=sin(x+y)
cosy-x(y')siny=(1+y')cos(x+y)
cosy-x(y')siny=cos(x+y)+(y')cos(x+y)
cosy-cos(x+y)=(y')cos(x+y)+x(y')siny
(y')[cos(x+y)+xsiny]=cosy-cos(x+y)
y'=[cosy-cos(x+y)]/[cos(x+y)+xsiny]

回答4:

左右各求导,得:cosy-xsiny.(y')=cos(x+y)*(1+y'),合并同类项得:y'=(cosy-cos(x+y))/(cos(x+y)+xsiny)