求方程x^3-y^3+x^2y-xy^2=32的正整数解的个数

2024-12-30 08:39:02
推荐回答(2个)
回答1:

x^3-y^3+x^2y-xy^2=32
化简后(x-y)(x^2+xy+y^2)+xy(x-y)=32
(x-y)(x+y)^2=32
x-y是偶数,(x+y)^2也必定是偶数,只有偶数相乘结果才是偶数,正整数的平方≤32且是偶数的,只有4和16,即(x+y)^2=4或16,显然等于4不可能,等于4的话,x-y=8,不成立,所以(x+y)^2=16,算出x+y=4,x-y=2,求得x=3,y=1.

回答2:

x^3-y^3+x^2y-xy^2=32
(x-y)(x^2+xy+y^2)+xy(x-y)=32
(x-y)(x+y)^2=32
通过分析讨论得到
x-y=2 (x+y)^2=16 x=3 y=1