1/(x+1)-1/(x+3)=1/(x+2)-1/(x+4)
1/(x+1)+1/(x+4)=1/(x+2)+1/(x+3)
[(x+4)+(x+1)]/[(x+1)(x+4)]=[(x+3)+(x+2)]/[(x+2)(x+3)]
(2x+5)/(x²+5x+4)=(2x+5)/(x²+5x+6)
(2x+5)[1/(x²+5x+4)-1/(x²+5x+6)]=0
由于x²+5x+4恒≠x²+5x+6,因此1/(x²+5x+4)-1/(x²+5x+6)恒≠0,要等式成立,只有2x+5=0
x=-5/2
通分
2/(x+1)(x+3)=2/(x+2)(x+4)
所以
x^2+4x+3=x^2+6x+8
x=-5/2
左右对掉就是了