1+2+……+n=n(n-1)/2Sn=1/2[1+2+3+……+n+1+2²+3²+……+n²]=1/2[n﹙n-1﹚/2+n(n+1)(2n+1)/6]=﹙2n³+6n²-2n﹚/6
(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+3+4+...+99+100) =2*【1/2-1/3+1/3-1/4+……+1/100-/101】=2*【1/2-1/101】=99/101
2*(1/2-1/101 )