答案有两组:(x - 3/2)² + y² = 5/2、(x + 1)² + y² = 5/2
过程:
{ x² + y² = 1
{ x² + y² - 4x = 0
(x² + y²) - (x² + y² - 4x) = 1
4x = 1
=> x = 1/4,y = ± √[1 - (1/4)²] = (± √15)/4
设圆的方程为:x² + y² + Dx + Ey + F = 0
{ 1/16 + 15/16 + (1/4)D + (√15/4)E + F = 0
{ 1/16 + 15/16 + (1/4)D - (√15/4)E + F = 0
{ (1/2)√(D² + E² - 4F) = √10/2
D = - 3,E = 0 或 F = - 1/4
D = 2,E = 0 或 F = - 3/2
即该圆为:
x² + y² - 3x - 1/4 = 0 => (x - 3/2)² + y² = 5/2
或
x² + y² + 2x - 3/2 = 0 => (x + 1)² + y² = 5/2
经过两圆交点的圆方程可以设为:
a(x^2+y^2-1)+x^2+Y^2-4x=0;
整理下把半径用含a的表达式表示出来,即R=f(a)(这个得自己算下);
再根据R=2分之根号10,求出a;
把a代回上方的方程,整理下就好了