3bcosA=ccosA+acosC
∵a/sinA=b/sinB=c/sinC
∴原式可化为:3sinBcosA=sinCcosA+sinAcosC = sin(A+C) = sin(π-B) = sinB
∵sinB≠0
∴两边同除以sinB得:3cosA=1
cosA=1/3>0,A为锐角
tanA = √(1-cos²A)/cosA = √(1-1/9)/(1/3) = 2√2
解:首先ccosA+acosC=b
3bcosA=b
cosA=1/3
sinA=2√2/3
tanA=sinA/cosA=2√2/3/(1/3)=2√2
推广acosB+bcosA=c
bcosC+ccosB=a