1/[n×(n+1)]=1/n-1/(n+1)∴原式=(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9) =1/3-1/9 =2/9
1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9=1/3-1/9=2/9