tan(派/4+a)
=(1+tana)/(1-tana)
=1/2
2+2tana=1-tana
3tana=-1 tana=-1/3
sin2α-cos^2α/1+cos2α
=(2sinacosa-cos^2a)/(1+2cos^2a-1)
=(2sinacosa-cos^2a)/(2cos^2a)
=(2sina-cosa)/2cosa 分子分母同时除以cosa
=(2tana-1)/2
=(-2/3-1)/2
=-5/6
tan(派/4+a)=(tanπ/4+tana)/[1-tanπtana]=1/2
解得tanα= -1/3
sin2α-cos^2α/1+cos2α=(sin2α-cos^2α)/(1+2cos^2α-1)=(sin2α-cos^2α)/(2cos^2α)=
tan²α/2-1/2=-5/6