一、平面向量(12课时,8个)
内容:
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点; 6.平面向量的数量积;7.平面两点间的距离;8.平移.
要求:
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2.掌握向量的加法和减法。
3.掌握实数与向量的积,理解两个向量共线的充要条件。
4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用。掌握平移公式。
二、集合、简易逻辑(14课时,8个)
内容:
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑联结词;7.四种命题;8.充要条件.
要求:
1.理解集合、子集、补集、交集、并集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
2.理解逻辑联结词“或”、“且”、“非”的含义。理解四种命题及其相互关系。掌握充分条件、必要条件及充要条件的意义。
三、函数(30课时,12个)
内容:
1.映射;2.函数;3.函数的单调性、奇偶性;4.反函数;5.互为反函数的函数图象间的关系; 6.指数概念的扩充;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数;12.函数的应用举例.
要求:
1.了解映射的概念,理解函数的概念。
2.了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
3.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
4.理解分数指数幂的概念,掌握有理数指数幂的运算性质。掌握指数函数的概念、图像和性质。
5.理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像和性质。
6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
四、不等式(22课时,5个)
内容:
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
要求:
1.理解不等式的性质及其证明。
2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|.
五、三角函数(46课时,16个)
内容:
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式(平方关系、商数关系、倒数关系);6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11. 函数 的图象;12.正切函数的图象和性质;13.已知三角函数值求角;14.正弦定理;15.余弦定理;16.斜三角形解法.
要求:
1.了解任意角的概念、弧度的意义。能正确地进行弧度与角度的换算。
2.理解任意角的正弦、余弦、正切的定义。了解余切、正割、余割的定义。掌握同角三角函数的基本关系式。掌握正弦、余弦的诱导公式。了解周期函数与最小正周期的意义。
3.掌握两角和与两角差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。
4.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
5.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数 的简图,理解A、 、 的物理意义。
6.会由已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示。
7.掌握正弦定理、余弦定理,并能初步运用它们解、斜三角形。
六、数列(12课时,5个)
内容:
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
要求:
1.理解数列的概念,了解数列通项公式的意义。了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
3. 理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
七、直线和圆的方程(22课时,12个)
内容:
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;
4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
要求:
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式。能根据直线的方程判断两条直线的位置关系。
3.了解二元一次不等式表示平面区域。
4.了解线性规划的意义,并会简单的应用。
5.了解解析几何的基本思想,了解坐标法。
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
八、圆锥曲线(18课时,7个)
内容:
1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.
要求:
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。
2.掌握双曲线的定义、、标准方程和双曲线的简单几何性质。
3. 掌握抛物线的定义、、标准方程和抛物线的简单几何性质。
4.了解圆锥曲线的初步应用。
九、(B)直线、平面、简单何体(36课时,28个)
内容:
1.平面及基本性质;2.平面图形直观图的画法;3.平行直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平行平面的判定和性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.正多面体;26.棱柱;27.棱锥;28.球.
要求:
1.理解平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图。能够画出空间两条直线、直线和平面的种位置关系的图形。能够根据图形想象它们的位置关系。
2.掌握直线和平面平行的判定定理和性质定理。理解直线和平面垂直的概念,掌握直线和平面垂直的判定定理。掌握三垂线定理及其逆定理。
3.理解空间向量的概念,掌握空间向量的加法、减法和数乘。
4.了解空间向量的基本定理。理解空间向量坐标的概念,掌握空间向量的坐标运算。
5.掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积的公式。掌握空间两点间的距离公式。
6.理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。
7.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念。对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。掌握直线和平面垂直的性质定理。掌握两个平面平行、垂直的判定定理和性质定理。
8.了解多面体、凸多面体的概念,了解正多面体的概念。
9.了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
10.了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
11.了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式。
十、排列、组合、二项式定理(18课时,8个)
内容:
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
要求:
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式,并能用它解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
十一、概率(12课时,5个)
内容:
1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.
要求:
1.了解随机事件的发生存在着规律性和随机事件概率的意义。
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
4.会计算事件在n次独立重复试验中恰好发生k次的概率。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
内容:
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
要求:
1.了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
2.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望、方差。
3.会用随机抽样、系统抽样、分层抽样等常用抽样方法从总体中抽取样本。
4.会用样本频率去估计总体分布。
5.了解正态分布的意义及主要性质。
6.了解线性回归的方法和简单应用。
十三、极限(12课时,6个)
内容:
1.数学归纳法;2.数学归纳法应用;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
要求:
1.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
2.了解数列极限和函数极限的概念。
3.掌握极限的四则运算法则。会求某些数列与函数的极限。
4.了解函数连续性的意义,了解闭区间上连续函数有最大值和最小值的性质。
十四、导数(18课时,8个)
内容:
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值.
要求:
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2.熟记基本导数公式(c,xm(m为有理数),sinx,cosx,ex,ax,lnx,logax的导数);掌握两个函数和、差、积、商的求导法则。了解复合函数的求导法则,会求某些简单函数的导数。
3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
十五、复数(4课时,4个)
内容:
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.数系的扩充.
要求:
1.了解复数的有关概念及复数的代数表示和几何意义。
2.掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算。
3.了解从自然数系到复数系的关系及扩充的基本思想
http://wenku.baidu.com/view/db531c84e53a580216fcfe51.html
这个谁能确定呢,好好踏实学习重点吧