设X1,X2,....Xn取自总体X的样本,总体X在(θ-1,θ)上服从均匀分布,证明:θ=max(x1,x2...xn)+

2025-01-05 06:41:17
推荐回答(1个)
回答1:

令Y=Z+1/(n+1),其中Z=max(x1,x2...xn),要说明Y是θ的无偏估计量,,就是要说明E(Y)=θ.
显然Z的分布函数是P(Z<=z)=P(X1<=z,...Xn<=z)=P(X1<=z)^n.对之求导,得到Z的密度函数,f(z)=n*(z-(θ-1))^(n-1),当θ-1<=z<=θ;其余为0..积分求出Z的期望E(Z)=n/(n+1)+θ-1,==>E(Y)=E(Z)+1/(n+1)=θ....