利用二重积分计算由(x-1)^2+(y-1)^2=1,xy=z,z=0所围成图形的体积

2024-12-30 14:50:20
推荐回答(3个)
回答1:

(x-1)^2+(y-1)^2=1是圆柱面,在XOY平面投影是圆心在(1,1),半径为1的圆,
z=xy是个双曲抛物面,
积分区域D: 0≤x≤2,
1-√[1-(x-1)^2]≤y≤1+√[1-(x-1)^2],
V=∫【0,2】dx∫【1-√[1-(x-1)^2],1+√[1-(x-1)^2]】 xy dy
=(1/2)∫【0,2】dx{1+√[1-(x-1)^2]}^2-{1-√[1-(x-1)^2]}^2
=(1/2)∫【0,2】{1+√[1-(x-1)^2]+1-√[1-(x-1)^2]}{1+√[1-(x-1)^2]-1+√[1-(x-1)^2}xdx
=(1/2)∫【0,2】2*2x√[1-(x-1)^2]dx
=2∫【0,2】x√[1-(x-1)^2]dx
=(-2/2)∫【0,2】√(2x-x^2)d(2x-x^2)+2∫【0,2】√((2x-x^2)dx
=-(2x-x^2)^(1/2+1)/(1/2+1)【0,2】+2∫【0,2】√((2x-x^2)dx
=2∫【0,2】√((2x-x^2)dx
设x-1=u,
V=2∫【-1,1】√(1-u^2)du
设u=sint,du=costdt,
V=2∫【-π/2,π/2】(cost)^2dt
=(2/2)∫【-π/2,π/2】(1+cos2t)dt
=(t+sin2t/2)[-π/2,π/2]
=π/2-(-π/2)+0-0
=π。
用极坐标,积分区域:0≤θ≤π/2。圆的极坐标方程为:ρ^2-2ρ(sinθ+cosθ)+1=0,ρ和θ函数关系较复杂,楼上答案是如何得到的?

回答2:

解:根据题意分析知,所围成的立体的体积在xy平面上的投影是d:y=1与y=x²围成的区域(自己作图)

所围成的立体的体积=∫∫(x²+y²)dxdy
=2∫<0,1>dx∫(x²+y²)dy
=2∫<0,1>(x²+1/3-x^4-x^6/3)dx
=2(x³/3+x/3-x^5/5-x^7/21)│<0,1>
=2(1/3+1/3-1/5-1/21)
=88/105。

回答3:

V=∫∫xydxdy x-1=psint y-1=pcost
=∫【0,2π】dt∫【0,1】(psint+1)(pcost+1)pdp