f(x)=2倍根号3sinx-2cosx
=4(sinx*√3/2-1/2cosx)
=4sin(x-π/6)
因此若x属于[0,π]
当x=0时有最小值-2
当x=2π/3时有最大值4
f(x)=2√3sinx-2cosx=4(√3/2×sinx-1/2×cosx)=4(sinx×cos30°-cosx×sin30°)=4sin(x-π/6)
∵x∈[0,π]
∴x-π/6∈[-π/6,5π/6]
∴sin(x-π/6)∈[-1/2,1]
∴f(x)∈[-2,4]
∴f(x)的最大值为4,最小值为-2
12+4=16
f(x)=4(√3/2sinx-1/2cosx)
=4(sinxcos30°-cosxsin30°)
=4sin(x-30°)
x∈[0,π],
fmax=4
fmin=4sin(0-30°)=-2