高一数学,已知函数y=sin平方x+2sinxcosx+3cos平方x ,x属于R。问1、函数最小正周期是什么?2、求函数...

2024-12-31 17:11:38
推荐回答(5个)
回答1:

f(x)=sin²x+2sinxcos+3cos²x
=2sinccosx+2cos²x+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
1、最小正周期是2π/2=π
2、增区间:2kπ-π/2≤2x+π/4≤2kπ+π/2
kπ-3π/8≤x≤kπ+π/8
则增区间是:[kπ-3π/8,kπ+π/8],其中k∈Z

回答2:

y=sin平方x+2sinxcosx+3cos平方x=(sin^2x+cos^2x)+sin2x+2cos^2x-1+1=1+sin2x+cos2x+1=根号2sin(2x+Pai/4)+2
故最小正周期T=2π/2=π
增区间是:-Pai/2+2kPai<=2x+Pai/4<=Pai/2+2kPai
即是[KPai-3Pai/8,kPai+Pai/8]

回答3:

(1)y=sin²x+2sinxcosx+3cos²x
=(sin²x+cos²x)+sin2x+2cos²x
=1+sin2x+(1+cos2x)
=sin2x+cos2x+2
=√2sin(2x+π/4)+2,
∴函数的最小正周期T=2π/2=π.
(2)由2kπ-π/2≤2x+π/4≤2kπ+π/2,
2kπ-3π/4≤2x≤2kπ+π/4
kπ-3π/8≤x≤kπ+π/8(k∈Z),
∴函数的增区间为[kπ-3π/8,kπ+π/8](k∈Z).

回答4:

∵cos2x=2cos²x-1=1-2sin²x
∴sin²x=﹙1-cos2x﹚/2,cos²x=﹙1+cos2x﹚/2
又∵sin2x=2sinxcosx
∴y=﹙1-cos2x﹚/2+sin2x+3[﹙1+cos2x﹚/2]=cos2x+sin2x+2
=2½sin﹙2x+π/4﹚+2
∴函数最小正周期为π,增区间是[-3π/8+kπ,π/8+kπ]

回答5:

y=sin^x+2sinxcosx
=1/2-cos2x/2+sin2x
=根号下(5/4)*[2sin2x/根号5-cos2x/根号5]+1/2
设cosa=2/根号5,sina=-1/根号5
上式=根号下(5/4)*sin(2x+a)+1/2
因此周期=2派/2=派