高一物理 机械能守恒

2024-12-12 13:19:13
推荐回答(1个)
回答1:

(1)由图可知,随m2的下滑,绳子拉力的竖直分量是逐渐增大的,m2在C点受力恰好平衡,因此m2从B到C是加速过程,以后将做减速运动,所以m2的最大速度即出现在图示位置.对m1、m2组成的系统来说,在整个运动过程中只有重力和绳子拉力做功,但绳子拉力做功代数和为零,所以系统机械能守恒.ΔE增=ΔE减,即

m1v1^2/2+m2v2^2/2+m1g(AC-AB)sin30°=m2g·BC

又由图示位置m1、m2受力平衡,应有:

Tcos∠ACB=m2g,T=m1gsin30°

又由速度分解知识知v1=v2cos∠ACB,代入数值可解得v2=2.15 m/s,

(2)m2下滑距离最大时m1、m2速度为零,在整个过程中应用机械能守恒定律,得:

ΔE增′=ΔE减′

即:m1g(sqrt(H^2+AB^2)-AB)sin30°=m2gH

利用(1)中质量关系可求得m2下滑的最大距离H=(4sqrt(3)/3)m=2.31 m