Y = 3X^2 - 12X + 5 = 3(X^2 - 4X + 4) + 5 -12 = 3(X - 2)^2 - 7
0 =< X <= 3 ........ Y 涵盖了抛物线最低点
-1 =< X <= 1 ........ Y 没有涵盖.........
很简单,函数为二次函数,有二次函数性质知:
其对称轴为x=2,函数图象开口向上.
因此,
当 0≤x≤3时,函数在x=2时取得最小值y=3x4-12x2+5=-7
当-1≤x≤1时,函数单调递减
因此,
当x=-1时,函数取得最大值y=3x1-12x(-1)+5=20
当x=1 时,函数取得最小值y=3x1-12x1+5=-4