2sin^2α-3sinαcosα+5cos^2α
=[2sin^2α-3sinαcosα+5cos^2α]/1
=[2sin^2α-3sinαcosα+5cos^2α]/(sin^2α+cos^2α)分子分母同时除以cos^2α
=[2sin^2α/cos^2α-3sinαcosα/cos^2α+5cos^2α/cos^2α]/(sin^2α/cos^2α+cos^2α/cos^2α)
=(2tan^2α-3tanα+5)/(tan^2α+1)
=(2*2^2-3*2+5)/(2^2+1)
=(8-6+5)/5
=7/5
sina/cosa=tana=2
sina=2cosa
所以sin²a=4cos²a
因为sin²a+cos²a=1
所以cos²a=1/5
sin²a=4/5
则sinacosa=(2cosa)cosa=2cos²a=2/5
所以原式=7/5
tana=2 所以可得:sina=2cosa
因:sin^2a+cos^2a=1
所以可得:cos^2a=1/5
2sin^2α-3sinαcosα+5cos^2α
=8cos^2a-6cos^2a+5cos^2a
=7cos^2a
=7/5
tana=2
(2sin^2α-3sinαcosα+5cos^2α)/(sin²a+cos²a)
同时除以cos²a
=[2tan²a-3tana+5]/(tan²a+1)
带入 tana=2得
=(8-6+5)/(4+1)
=7/5