设S1=1+1⼀(1^2)+1⼀(2^2),S2=1+1⼀(2^2)+1⼀(3^2),S3=1+1⼀(3^2)+1⼀(4^2)......Sn=1+1⼀[n^2+1⼀(n+1)^2].

2024-12-15 07:08:25
推荐回答(2个)
回答1:

√S1=1+1/(1×2) √S2=1+1/(2×3) ….√Sn=1+1/(n×(n+1))
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))=n+[1-1/(n+1)]
= n+n/(n+1)
点点外婆祝你学习进步

回答2:

√S1=1+1/(1×2) √S2=1+1/(2×3) ….√Sn=1+1/(n×(n+1))
S=(1+1+…..+1)+1/(1×2)+1/(2×3)+…+1/(n×(n+1))
=n+{(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+[1/n-1/(n+1)]}
=n+[1-1/2+1/2-1/3+1/3-1/4+......+1/n-1/(n+1)]
=n+[1-1/(n+1)]
= n+n/(n+1)