把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。 其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。 盈亏临界点计算的基本模型 设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为: 盈亏临界点的计算,可以采用实物和金额两种计算形式: 1.按实物单位计算: 其中,单位产 设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8 000元,则盈亏临界点的销售量(实物单位)=8 000÷(10-6)=2 000(件)。品贡献毛益=单位产品销售收入-单位变动成本 2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率 其中,贡献毛益率=贡献毛益/ 销售收入
解盈亏问题的公式
【一盈一亏的解法】 (盈数+亏数)÷两次每人分配数的差 【双盈的解法】 (大盈-小盈)÷两次每人分配数的差 【双亏的解法】 (大亏-小亏)÷两次每人分配数的差
重点难点
有些应用题,从表面看起来似乎不是盈亏问题,但认真分析,将条件适当地转化后,竟然可变成盈亏问题进行解答。
学法指导
由解盈亏问题的公式可以看出,求解此类问题的关键是小心确定两次分配数量的差和盈亏的总额,如果两次分配是一次是有余,另一次是不足时,则依上面的公式先求得人数(不是物数),再求出物数;如果两次分配都是有余,则公式变成盈额差除以两次分配数之差;如果两次分配都是不足时,则公式变成亏额差除以两次分配数之差,如果…… 有时候,必须转化题目中条件,才能从复杂的数量关系中寻找解答;有时候,直接从“包含”入手比较困难,可以间接从其反面“不包含”去想就会比较容易。
http://baike.baidu.com/view/14213.htm
题呢
题在哪里?????
亲!你想问啥?