第一题反复利用(cscα)^2-(cotα)^2=1
(cscα)^6-(cotα)^6
=[(cscα)^2-(cotα)^2][(cscα)^4+(cscα)^2(cotα)^2+(cotα)^4] (*)
=(cscα)^4+(cscα)^2(cotα)^2+(cotα)^4
=[(cscα)^2-(cotα)^2]^2+3(cscα)^2(cotα)^2 (*)
=1+3(cscα)^2(cotα)^2
第二题
对于求证式左边:
分子分母同乘cosα化为:(sinα)^2 /(sinα - sinαcosα)......M
同理 ,求证式右边可化为:(sinα + sinαcosα)/(sinα)^2 ......N
M/N = (sinα)^4/{(sinα)^2·[1 - (cosα)^2]} = 1
∴M = N ,即:tanαsinα/(tanα-sinα)=(tanα+sinα)/tanαsinα
第四题
用分析法,要证(1+secα+tanα)÷(1+secα-tanα)=(1+sinα)÷cosα 须证(1-sina+cosa)(1+sina)=cosa(1+sina+cosa)两边去分母即1-(sina)^2=(cosa)^2
这是显然成立的
第三题不会````````````
求加分``````````