解:∵x/(x²-3x+1)=1/5∴(x²-3x+1)/x=5x²-3x+1=5xx²+1=8x∴(x²+1)×1/x=8x×1/xx+(1/x)=8∴[x+(1/x)]²=8²x²+2×x×1/x+(1/x²)=64x²+2+(1/x²)=64∴x²+(1/x²)=62∵(x^4+x²+1)/x²=(x^4/x²)+(1/x²)+(x²/x²) ( ^ 表示乘方 )=x²+(1/x)²+1=62+1=63∴ x²/(x^4+x²+1)=1/63