1)当n=1时,
左边=1+1=2
右边=2^1=2=左边
所以等式成立
2)当n=k成立,
即(k+1)(k+2)…(k+k)=2^k*1*3…(2k-1)
则n=k+1时,
左边=(k+1+1)(k+1+2)(k+1+3)...(k+1+k+1)
=(k+2)(k+3)(k+4)....(2k+2)
=(k+1)(k+2)…(k+k) × [(2k+1)(2k+2)/(k+1)]
=2^k*1*3…(2k-1) × 2(2k+1)
=2^(k+1)*1*3....(2k-1)(2k+1)=右边
所以若n=k成立,则n=k+1也成立
得证~~
有疑问请追问~~~
n=k时,(k+1)(k+2)…(k+k)=2^k*1*3…(2k-1)
n=k+1时,左边是
(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
=2(k+1)(k+2)(k+3)…(k+k)(2k+1)
从而 从k到k+1,左边增添的代数式是
2(2k+1)
2(2k+1)