解:原式
= (x-3) / [3x(x-2)] / [ (x^2 - 4 - 5)/(x-2) ]
= (x-3) / [3x(x-2) * (x+3)(x-3)/(x-2)]
= 1/ [3x(x+3)]
= (1/ 3 ) * 1/ (x^2 + 3x) (代入一元二次方程)
= 1/3. 这是正确的做法,求采纳
解:原式
= (x-3) / [3x(x-2)] / [ (x^2 - 4 - 5)/(x-2) ]
= (x-3) / [3x(x-2) * (x+3)(x-3)/(x-2)]
= 1/ [3x(x+3)]
= (1/ 3 ) * 1/ (x^2 + 3x) (代入一元二次方程)
= 1/3.
自己没写清楚,分子分母都看不懂。
1/3