an=1/n(n-3)=[1/﹙n-3﹚-1/n]/3
Sn=∑[1/﹙n-3﹚-1/n]/3=[1+1/2+1/3-1/﹙n-2﹚-1/﹙n-1﹚-1/n]/3=[11/6-1/﹙n-2﹚-1/﹙n-1﹚-1/n]/3
an=1/n(n-3), n不等于3
=(1/(n-3)-1/n)/3
Sn=(-1/2)+(-1/2)+1/4 + 1/10+。。。+1/n(n-3)
=-1+(1-1/4)/3 +(1/2 -1/5)/3 + (1/3 - 1/6)/3 +(1/4 - 1/7)/3+。。。
+(1/(n-6)-1/(n-3))/3 +(1/(n-5)-1/(n-2))/3
+(1/(n-4)-1/(n-1))/3 +(1/(n-3)-1/n)/3
=-1+1/3+1/2/3+1/3/3 -1/(n-2)/3 -1/(n-1)/3 -1/n/3
=-7/18-(1/(n-2)+1/(n-1)+1/n)/3