在实数等比数列{an}中,a2=3,a5=24,则数列a1,a4,a7,a10,···的通项公式为

2024-12-30 07:43:32
推荐回答(3个)
回答1:

a2=3,a5=24
q³=a5/a2=8
q=2
a1=a2/q=3/2
所以 an=(3/2)*2^(n-1)=3*2^(n-2)
a1,a4,a7,a10,···
通项公式bn=a(3n-2)=3*2^(3n-4)

回答2:

a2=3,
a5=a2*q^3=24,
q^3=8
a1=a2/q=3/2
数列a1,a4,a7,a10...a3n-2..
公比Q=q^3=8
a3n-2=a1*Q^(n-1)=(3/2)*8^(n-1)

回答3:

a2=3,a5=24
a5=a2*q^3
q^3=24/3=8
q=2
a1=a2/q=3/2
a4=a1q^3=3/2*8
Q=a4/a1=q^3=8
所以,a1,a4,a7....的通项公式bn=a1Q^(n-1)=3/2*8^(n-1)