分析:(1)根据三角形的面积公式,则应分别分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F.然后根据三角形的面积公式分别计算要证明的等式的左边和右边即可;
(2)根据(1)中的思路,显然可以归纳出:从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.证明思路类似.解答:
证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,
则有:S△AOB= BO•AE,
S△COD= DO•CF,
S△AOD= DO•AE,
S△BOC= BO•CF,
∴S△AOB•S△COD= BO•DO•AE•CF,
S△AOD•S△BOC= BO•DO•CF•AE,
∴S△AOB•S△COD=S△AOD•S△BOC.(4分);
(2)能.
从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.
或S△AOD•S△BOC=S△AOB•S△DOC,(5分)
已知:在△ABC中,D为AC上一点,O为BD上一点,
求证:S△AOD•S△BOC=S△AOB•S△DOC.
证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,
则有:S△AOD= DO•AE,S△BOC= BO•CF,
S△OAB= OB•AE,S△DOC= OD•CF,
∴S△AOD•S△BOC= OB•OD•AE•CF,
S△OAB•S△DOC= BO•OD•AE•CF,
∴S△AOD•S△BOC=S△OAB•S△DOC.点评:恰当的作出三角形的高,根据三角形的面积公式进行证明.
1.已知在三角形ABC中AC=3AB,AD平分角BAC交BC于E,CD垂直AD于D
求证AE=ED。
证明:延长CD、AB,交于F点,取BF的中点G,在△AFC中,AD平分∠FAC,AD垂直FC,所以△AFC是一个等腰三角形,AF=AC,由AC=3AB推出:BF=2AB,FG=GB=AB,
故在△FBC中,D是FC的中点,G是BF的中点,即GD是中位线,于是
GD平行BC,
在△AGD中,可知BE平行GD,而B是AG之中点,所以E是AD之中点。
2.已知在三角形ABC中D是AB的中点,E是BC的3等分点(BE大于CE),AE,
CD交于点F.
求证F是DC的中点。
证明:取BE的中点G,连接DG,在△ABE中,D是AB的中点,G是BE的中点,所以DG是中位线,推出:DG平行AE,
在△CDG中,E是GC的中点,FE平行DG,所以FE是它的一条中位线,所以DF=FC,即F是CD的中点。