1、一个农夫带着三只兔到集市上去卖,每只兔大概三四千克,但农夫的秤只能称五斤以上,问他该如何称量。
答:先称3只,再拿下一只,称量后算差。
2、某人先向正北走32km,再向正南走36km,问以下哪些可能是正确的
①他离出发点4km②他离出发点大于48km③他离出发点68km④他离出发点小于4km⑤他离出发点大于4km小于68km
答:1,3,5
3、小明的日记本每页都标上号码,他用0~9的数字共981个。日记本有多少页?
答:357
4、小华参加摩托车比赛,参加的选手与比赛场次一样多,任何两个选手只在一次比赛中相遇,每次比赛出场四人,问共有多少人参加。
答:13
5、有1~9九个数字组成两个数(每个数只用一次),试问组成什么数乘积最大?
答:9642 87531
6、一百馒头一百僧,大僧三个更无争(就是说大僧每人吃三个馒头),小僧三人分一个,大小和尚各几人?(出自明代程大位《算法统宗》)
答:把1大僧和3小僧看做1组,100个和尚能分成100/4=25(组)
因为每组有1大僧,所以有大僧1*25=25(人)
所以有小僧100-25=75(人)
7、3个人完成一件工作需要3周零3天。照这样计算,4个人完成这件工作需要多长时间?(出自1997年美国纽约长岛小学数学竞赛试题)
答:3个人完成一件工作需要3周零3天,要是1个人完成一件工作,要用的天数是原来的三倍:(3*7+3)*3=72(天)
要是4个人完成一件工作,则需72天的四分之一:72/4=18(天)
8、一本书有500页,分别编上1,2,3……的页码,问数字1共出现了几次?(出自美国“小学数学奥林匹克”试题)
答:1~99这段可分为1~9,10~19,20~29……90~99十组,除了10~19这一组中“1”出现了11次之外(数11中“1”出现了两次),其余九组,都只出现了一次。所以出现11+9=20(次)
100~199这段,与上一段比较,百位多出现100次的“1”,而个位和十位出现“1”的情况与上一段相同。所以出现了100+20=120(次)
200~299,300~399,400~499 三段百位均未出现“1”,而个位和十位出现“1”的情况与1~99段相同,各为20次。所以出现20*3=60(次)
500中未出现“1”
综上所述,总共出现20+120+60=200(次)
9、爸爸和儿子从东西两地同时相对出发,两地相距10千米。爸爸每小时走6千米,儿子每小时走4千米。爸爸带了一只小狗,小狗用每小时10千米的速度向儿子跑去,遇到儿子或爸爸立即折返,直到爸爸和儿子相遇才停。问小狗跑了多少路程?
答:小狗跑的时间就是爸爸和儿子走路用的时间
爸爸和儿子相遇用了:10/(6+4)=1(小时)
所以小狗跑了1小时,跑了10千米。
10、一个老人临终留了17匹马给3个儿子,说老大分得二分之一,老二分得三分之一,老三分得九分之一,不许杀死马。如何分?
答:借一匹马来,就有18匹马了,老大分得9匹,老二分得6匹,老三分得2匹,加在一起正好17匹马,还剩一匹还回去。