已知cos(π4-α)=3⼀5,sin(3π4+β)=5⼀13,且0<β<π⼀4,π⼀4<α<3π⼀4,求sin(α+β)的值.

2024-12-19 18:10:57
推荐回答(2个)
回答1:

因为π/4<α<3π/4,所以-3π/4<-α<-π/4,-π/2<π/4-α<0,又因为cos(π/4-α)=3/5,所以
sin(π/4-α)=-4/5.因为0<β<π/4,所以3π/4<3π/4+β<π,又sin(3π/4+β)=5/13,所以
cos(3π/4+β)=-5/13,所以sin(α+β)=sin[(3π/4+β)-(π/4-α)-π/2]=-cos[(3π/4+β)-(π/4-α)]=
-cos(3π/4+β)cos(π/4-α)]-sin(3π/4+β)sin(π/4-α)]=-(-5/13)*(3/5)-(5/13)*(-4/5)=7/13.

回答2:

se6zs