导函数的左右极限存在,根据导数极限定理可以知道原函数在定义域上可导,可导必定连续,所以原函数是连续的。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。
若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。
以上内容参考:百度百科--导函数
这个问题问的很奇怪。首先,有第一类间断点的函数一定无原函数,但是有没有定积分却不一定。存在定积分的条件是函数有界且有有限个了断点。
准确说,可导的函数必连续,无论导函数是什么形式,既然说有导函数的原函数,那必然是连续的
有左右导数的点必是左右连续的,因而是连续点。
导函数的左右极限存在,根据导数极限定理可以知道原函数在定义域上可导,可导必定连续,所以原函数是连续的