(1)结论:(n-1)*n*(n+1)*(n+2)+1=[(n-1)*(n+2)+1]^2
证:(n-1)*n*(n+1)*(n+2)+1=(n^2-1)*(n^2+2n)+1=n^4+2n^3-n^2-2n+1
[(n-1)*(n+2)+1]^2=(n^2+n-1)^2=n^4+2n^3-n^2-2n+1
得证
(2)2000*2001*2003*2004+1=(2002-2)*(2002-1)*(2002+1)*(2002+2)+1=(2002^2-1)*(2002^2-4)+1=2002^4-5*2002^2+5=16 064 076 024 001
2001^4